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METHODS,SYSTEMS, AND COMPUTER
PROGRAM PRODUCTS FOR GPU-BASED
POINT RADIATION FOR INTERACTIVE
VOLUME SCULPTING AND SEGMENTATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims priority to U.S. Provisional
Application No. 61/131,594 filed Jun. 9, 2008, the entire
disclosure of which is incorporated by reference in its
entirety.

COPYRIGHT NOTICE

[0002] A portion of the disclosure of this patent document
contains material, which is subject to copyright protection.
The copyright owner has no objection to the facsimile repro-
duction by anyone of the patent document or the patent dis-
closure, as it appears in the Patent and Trademark Office
patent files or records, but otherwise reserves all copyright
rights whatsoever.

FIELD OF INVENTION

[0003] The present invention relates generally to volumet-
ric visualization. More particularly, the present invention
relates to interactive volumetric manipulation, sculpting, seg-
mentation, and visualization of volumetric data sets.

BACKGROUND OF THE INVENTION

[0004] In medical imaging, clinicians and surgeons often
use computer-aided techniques to identify and analyze ana-
tomical structures of interest. Many techniques were devel-
oped in particular for segmentation (see survey by Pham, D.
L. et al., “A Survey of Current Methods in Medical Image
Segmentation,” Technical Report JHU/ECE 99-01, (1999)).
In Sherbondy, A. et al., “Fast Volume Segmentation With
Simultaneous Visualization Using Programmable Graphics
Hardware,” Proc. of IEEE Visualization, pp 171-176 (2003),
aproposal is provided for navigating from 2D images to place
a seed point. This point is used for a seeded region growing
algorithm for determining the area of interest. This kind of
technique has three major issues to be addressed: how to
navigate, how to plant the seeds, and how to control the
growing threshold. Current medical volume datasets contain
hundreds of slices and require domain expertise for under-
standing the cross-sectional representation. An ideal segmen-
tation environment would simulate physical tools allowing
users to directly operate on 3D datasets and carve them.
[0005] The second issue is how to plant the seeds. Due to
the noise in the medical image acquisition process, materials
with similar intensity values are sometimes disconnected,
resulting in an incomplete segmentation of the entire organ. It
would be beneficial to perform region growing on a group of
the seeds in a parallel fashion.

[0006] The third issue is how to control the region growing
algorithm. Using the static thresholding methods is not an
ideal solution since different material in the dataset can have
very close intensity values. This is an issue and requires a trial
and error process for tweaking the thresholds. Addressing all
of these issues, in addition to real-time feedback and high-
quality rendering, makes the problem even more challenging.
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[0007] Accordingly, it is desirable to provide methods and
software-related tools that overcome these problems.

BRIEF SUMMARY OF THE INVENTION

[0008] Asdescribed herein, the present embodiments relate
to methods, systems, and computer program products that
provide a framework of interactive tools for real-time volume
manipulation, sculpting, segmentation, and visualization. A
Graphics Processing Unit (GPU)-based point radiation tech-
nique is introduced as a building block for high-quality vol-
ume carving. The point’s radiation is used to create smooth
anti-aliased results as well as a collection of interactive ray-
casting based tools for direct drilling, lasering, peeling, cut-
ting, and/or pasting the 3D volume using a sketch-based
interface.

[0009] Methodologies and/or techniques are provided for
interactive region growing segmentation and multiple seeds
planting by direct sketching on different regions. To obtain
rapid feedback, a parallel region growing technique is
described to concurrently operate on all the sketched seeds.
The parallel region growing technique allows segmentation
results to be dynamically modified through a series of undo,
redo, and resume operations.

[0010] In an embodiment, seeds are processed as points
using programmable hardware. Multiple seeds can be main-
tained by storing their state information in a separate 3D
buffer. Point radiation is utilized to create an anti-aliased seed
map and render the region growing result with high-quality
raycasting.

[0011] The above described and many other features of the
present embodiments will become apparent, as the embodi-
ments becomes better understood by reference to the follow-
ing detailed description when considered in conjunction with
the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The patent or application file contains at least one
drawing executed in color. Copies of this patent or patent
application publication with color drawing(s) will be pro-
vided by the Office upon request and payment of the neces-
sary fee.

[0013] The embodiments are illustrated in the figures of the
accompanying drawings, which are meant to be exemplary
and not limiting, in which like reference numbers indicate
identical or functionally similar elements, additionally in
which the leftmost digit(s) of a reference number identifies
the drawing in which the reference number first appears, and
in which:

[0014] FIG. 1 illustrates a schematic block diagram of one
embodiment of a computer system that may be used to imple-
ment certain embodiments of the present methods, systems,
and computer-readable media.

[0015] FIG. 2 illustrates a flowchart of on embodiment of
the present methods for interactive volume manipulation,
sculpting, segmentation, and visualization.

[0016] FIG. 3A-3E illustrates peeling and segmentation of
a super-brain dataset;

[0017] FIG. 4 illustrates reconstructing a set of 3D footprint
voxels from 2D point sprites;

[0018] FIGS. 5A-5B illustrate operating a point radiation
GPU-based drilling tool on a super-brain dataset;

[0019] FIGS. 6A-6B illustrate operating a point radiation
GPU-based lasering tool on super-brain dataset;
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[0020] FIGS. 7A-7B illustrate operating a point radiation
GPU-based peeling tool on a super-brain dataset;

[0021] FIG. 8 illustrates an overview of a GPU-based seg-
mentation framework;

[0022] FIGS. 9A-9B illustrates partial segmentation of
ventricles using a binary segmentation map without point
radiation and with point radiation;

[0023] FIGS. 10A-10D illustrates seed sketching and seg-
mentation of carotid and cerebral arteries from an angiogra-
phy dataset;

[0024] FIG. 11A illustrates peeling of the skull and seg-
mentation of the left and right lateral ventricle from the super-
brain dataset of FIG. 3;

[0025] FIG. 11B illustrates peeling of abdominal wall and
segmentation of the colon from an abdomen dataset; and
[0026] FIG. 11C illustrates lasering, drilling, and segmen-
tation of a molar tooth from a skull dataset.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

[0027] In the following description of the several embodi-
ments, reference is made to the accompanying drawings that
form a part hereof and in which is shown by way of illustra-
tion a number of specific embodiments. It is to be understood
that other embodiments can be utilized and structural changes
can be made without departing from the scope of the present
invention.

[0028] Methods, systems, computer program products are
described herein for GPU-based point radiation for interac-
tive volume sculpting and segmentation, which includes a
framework of interactive tools for real-time volume sculpting
and segmentation.

[0029] FIG. 1 illustrates a computer system 100. A central
processing unit (CPU) 104 is coupled to the system bus 108.
CPU 104 may be a general purpose CPU or microprocessor.
In a further embodiment, the CPU 104 comprises a Graphics
Processing Unit (GPU). In such an embodiment, the GPU
may include a microprocessor coupled to, or comprising, a
graphics card dedicated to calculating floating point opera-
tions, and the like. Alternatively, the microprocessor may
include a graphics accelerator or an integrated graphics pro-
cessing portion. The present embodiments are not restricted
by the architecture of the CPU 104, so long as the CPU 104
supports the modules and operations as described herein. The
CPU 104 may execute the various logical instructions accord-
ing to the present embodiments. For example, CPU 104 may
execute machine-level instructions according to the illustra-
tive operations described in this disclosure.

[0030] The computer system 100 can also include Random
Access Memory (RAM) 112, which may be SRAM, DRAM,
SDRAM, or the like. Computer system 100 may utilize RAM
112 to store various data structures used by a software appli-
cation configured to perform or operate any of the methods,
steps, and/or computer-readable media. Computer system
100 may also include Read Only Memory (ROM) 116 which
may be PROM, EPROM, EEPROM, optical storage, or the
like. The ROM may store configuration information for boot-
ing the computer system 100. RAM 112 and ROM 116 are
configured to hold or store user and/or system data.

[0031] The computer system 100 can also include an input/
output (I/0) adapter 120, a communications adapter 124, a
user interface adapter 128, and a display adapter 132. The I/O
adapter 120 and/or user the interface adapter 128 can, in
certain embodiments, enable a user to interact with the com-
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puter system 100, such as, for example, to input information
or data. In a further embodiment, the display adapter 132 can
display a graphical user interface associated with a software
orweb-based application for implementing any of the present
methods and/or steps described in this disclosure.

[0032] Inoneembodiment,the /O adapter 120 can connect
to one or more storage devices 136, such as one or more of a
hard drive, a Compact Disc (CD) drive, a floppy disk drive, a
tape drive, to the computer system 100, and/or to any other
drive or communications port for coupling to or interacting
with computer-readable media (e.g., tangible computer-read-
able media such as, for example, CD-ROM, CD+/-RW, flash
drives, portable hard drives, and the like). As such, it should
be noted that any of the present methods can be embodied in
acomputer program product comprising a computer-readable
medium having a computer-readable program code embod-
ied therein, the computer-readable program code adapted to
be executed to implement any of the present methods for
interactive volume manipulation, sculpting, segmentation,
and visualization.

[0033] In one embodiment, the Communications adapter
124 can be configured or adapted to couple computer system
100 to a network (e.g., internet, LAN, WAN, or the like). User
interface adapter 128 couples user input devices, such as a
keyboard 140 and/or pointing device 144, to computer system
100. Display adapter 132 may be driven by CPU 104 to
control the display on a display device 148.

[0034] The present embodiments are not limited to the
architecture of system 100. Rather computer system 100 is
provided as an example of one type of computing device that
may be adapted to perform or operate any of the methods,
steps, and/or computer-readable media described in the
present disclosure. For example, any suitable processor-
based device may be utilized including without limitation,
including personal digital assistants (PDAs), computer game
consoles, and multi-processor servers. Moreover, the present
embodiments may be implemented on application specific
integrated circuits (ASIC) or very large scale integrated
(VLSI) circuits. In fact, persons of ordinary skill in the art
may utilize any number of suitable structures capable of
executing logical operations according to the described
embodiments.

[0035] FIG. 2 illustrates a flowchart of an embodiment of
the present methods for interactive volume manipulation,
sculpting, segmentation, and visualization. In one embodi-
ment, the method 200 comprises: step 204 that includes
accessing three-dimensional point texture data including a
plurality of seed voxels for a graphic image (e.g., from RAM
112 and/or ROM 116 of system 100 in FIG. 1); step 208 that
includes visualizing the graphic image on a user interface
based on the texture data (see, e.g., FIG. 3A); step 212 that
includes receiving user input to define an input sketch speci-
fying a closed-curve region of the graphic image (see, e.g.,
FIG. 3B-3C); step 216 that includes designating the seed
voxels associated with the closed-curve region as active seed
voxels (see, e.g., FIG. 3C); step 220 that includes processing
the active seed voxels in parallel to grow each of the active
seed voxels without growing seed voxels not designated as
active voxels (see, e.g., FIG. 3D); and step 224 that includes
visualizing a segment of the graphic image based on the
processed active seed voxels (see, e.g., FIG. 3E).

[0036] FIGS. 3A-3E illustrate an implementation of the
interactive volume manipulation framework according to an
embodiment. FIGS. 3A-3E show a graphic image 400 of a
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human brain as visualized on a computer display, and follows
a process for peeling and segmentation of a super-brain
dataset. In FIG. 3A, a user, operating an input device in the
computer graphics environment, indicates a region 404 for
opening with a stroke of an input device (e.g., defining bound-
ary 408). In FIG. 3B, a surface-based peeling operation is
performed with user-specified depth. In FIG. 3C, the skull is
removed and the user sketches a region of seeds for segmen-
tation (e.g., with line or boundary 412). In FIG. 3D, the region
416 grows in accordance with the methods, and in FIG. 3E,
the grey and white matter are segmented and isolated.
[0037] The GPU-based point radiation framework of the
present embodiments may also include components and func-
tionality that may relate to volume clipping, volume sculpt-
ing, and volume segmentation with seeded region growing.
Volume clipping provides a means to expose parts of the
volume with cutting planes or more complicated geometry.
For example, in Weiskopf, D. et al., “Interactive Clipping
Techniques for Texture-Based Volume Visualization and Vol-
ume Shading,” IEEE Transactions on Visualization and Com-
puter Graphics 9(3), pp 298-312 (2003), interactive clipping
techniques are proposed to exploit graphics hardware. They
present depth-based clipping, using the depth structure of an
object, as well as clipping via voxelized clip object, utilizing
3D textures and distance fields.

[0038] In McGuffin, M. et al., “Using Deformations for
Browsing Volumetric Data,” Proc. of IEEE Visualization, pp
401-408 (2003), a method is presented that may be suitable
for browsing a volume with interactive manipulation widgets
by assigning individual voxels as the fundamental primitive.
InHuff, R. etal., “Erasing, digging and clipping in volumetric
datasets with one or two hands,” Proc. of the ACM Interna-
tional Conference on Virtual Reality Continuum and its
Applications, pp 271-278 (2006), methods are described to
exploit programmable hardware, and erasing, digging, and
clipping operations are proposed to uncover hidden structures
in the volume data. Recently, in Correa, C. D. et al., “Feature
Aligned Volume Manipulation for Illustration and Visualiza-
tion,” IEEE Transactions on Visualization and Computer
Graphics 12, pp 1069-1076 (2006), a set of operators (peeler,
retractors, pliers, dilators) are proposed that can be placed
anywhere on or within the volume.

[0039] However, these previous approaches either require
pre-constructed clipping objects or procedurally defined
operators. And for most of the hardware-based clipping meth-
ods, the algorithm is computed in the context of 3D texture
rendering, thereby requiring every voxel to be processed for
every frame. In contrast, the present methods and systems,
voxels are clipped and processed only if they are affected by
the points emitted by the tool.

[0040] Volume Sculpting generally refers to a modeling
technique for sculpting a solid material with a tool, which
modifies values in the voxel array. Sculpting tools can be used
to add, remove, paint, and/or smooth material. In Galyean, T.
A. etal., “Sculpting: an interactive volumetric modeling tech-
nique,” Proc. of SIGGRAPH ’91, pp 267-274 (1991), a 3D
device is adapted to sculpt a block of material bit-by-bit with
an additive tool, a heat gun, and sandpaper. In Avila, R. S. et
al., “A Haptic Interaction Method for Volume Visualization,”
Proc. of IEEE Visualization, pp 197-204 (1996), a 3D haptic
device is incorporated to simulate virtual sculpting tools by
applying 3D filters on the properties of the volume data.
Ferley, E. et al., “Practical volumetric sculpting,” The Visual
Computer 16, pp 469-480 (2000), includes a sculpting meta-
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phor for rapid shape prototyping with 3D input devices. In
general, sculpting with a 3D device can be a challenging task
as parts of the volume can occlude the tool itself. Moreover, it
can be difficult to visualize the 3D location of a virtual tool
relative to the target volume. In Wang, S. W. et al., “Volume
Sculpting,” Proc. of the 1995 Symposium on Interactive 3D
Graphics, pp 151-156 (1995), a carving and sawing tool is
described that utilizes a 3D splatting method with a hyper-
cone filter. Their approach is primarily in the context of solid
modeling.

[0041] With respect to volume segmentation, well-known
segmentation techniques, such as thresholding, k-means clus-
tering, watershed segmentation, and level-set methods, have
been applied in segmenting volume datasets. In Tzeng, F.-Y.
etal., “A Novel Interface for Higher-Dimensional Classifica-
tion of Volume Data,” Proc. of IEEE Visualization *03, pp
505-512 (2003), an intuitive user interface is proposed for
specifying high-dimensional classification functions by
painting directly on sample slices of the volume. In Owada, S.
et al., “Volume Catcher,” Proc. of the Symposium on Inter-
active 3D Graphics and Games, pp 111-116 (2005), a volume
catcher system is developed for which the user traces the
contour of the target region by drawing a 2D free form stroke
over the displayed volume.

[0042] A seeded region growing method has been explored
for segmenting volumes (see Justice, R. K. et al., “3-D Seg-
mentation of MR Brain Images Using Seeded Region Grow-
ing,” 8th Annual International Conference of the IEEE Pro-
ceedings, pp 1083-1084 (1996)). In Sherbondy, A. etal., “Fast
Volume Segmentation With Simultaneous Visualization
Using Programmable Graphics Hardware,” Proc. of IEEE
Visualization, pp 171-176 (2003), a volume segmentation
system is discussed to allows a user to paint seeds by drawing
on two-dimensional (2D) sectional views of a volume. How-
ever, selecting from hundreds of slices and pin-pointing a
correct location on a 2D image requires highly trained per-
sonnel and a large amount of time.

[0043] In Chen, H. L. J. et al., “Sketch-Based Volumetric
Seeded Region Growing,” Proc. of Eurographics Workshop
on Sketch-Based Interfaces and Modeling 2006, pp 123-129
(2006), a 3D seeded region segmentation system is presented
with splatting rendering. Chen, H. L. J. et al. allows volume
cropping with a sketch-based interface, and enables seed
searching directly on the 3D surface. The drawback in their
seed selecting approach is that only one seed can be explored
at atime and the region growing has to be computed off-line.
[0044] Recent approaches exploit programmable hardware
for accelerating the region growing algorithm (see Sher-
bondy, A. et al., “Fast Volume Segmentation With Simulta-
neous Visualization Using Programmable Graphics Hard-
ware,” Proc. of IEEE Visualization, pp 171-176 (2003), and
Schenke, S. et al., “GPU-Based Volume Segmentation,” Proc.
of Image and Vision Computing New Zealand 05, pp 171-
176 (2005). The seed growing computations of Sherbondy, A.
et al. and Schenke, S. et al. require rendering to sections of a
3D texture and must iterate through all layers of the volume to
complete a single growing step.

[0045] In contrast, in the point-based approach, seeds are
grown based on the currently active voxels that only consist of
a small percentage of total voxels, rather than iterating
through the entire volume for every frame (e.g., 100 vs. 512°
computation cycles), thus achieving dramatic performance
improvement with local updates. In addition, the methods and
systems also enable the processing of multiple seeds from the
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input sketch in parallel fashion and allows for dynamically
modifying the threshold, which is effective for the visualiza-
tion and manipulation of medical datasets.

GPU-Based Point Radiation

[0046] In one embodiment, a GPU-based point radiation
technique provides a fundamental building block for creating
a set of real-time volume manipulation tools (such as, direct
drilling, lasering, peeling, cutting, and/or pasting). To imple-
ment the technique, a set of 3D points (from the manipulation
tools) are created and associated to the existing voxels. Based
on the tool, the intensity values of the corresponding places in
the dataset are changed (e.g., by removing the material). The
binary use of points creates aliasing artifacts. To address this
issue, it can be assumed that each point has a continuous field
of energy (radiation) that drops smoothly off to zero. Taking
the radiation into consideration increases intensively the
computational load for an interactive application. This is
addressed by taking advantage of the programmable graphics
hardware. In fact, point radiation extends from a hardware
supported function—point sprite. Point sprite is a two-dimen-
sional billboard method for rendering a textured image from
a single point in space; whereas point radiation establishes a
three-dimensional metaphor for rendering a filtered volume
from a point sample. The basic idea of point radiation is also
close to the concept of 2D splatting, which is first described
by Westover (see Westover, L., “Footprint Evaluation for
Volume Rendering,” Proc. of SIGGRAPH *90, pp 367-376
(1990)), as a footprint evaluation for object-order volume
rendering. The splatting scheme allows every input sample to
be treated individually and therefore it is suitable for parallel
execution. The point radiation method, as an energy distribu-
tion process, produces a three-dimensional footprint.

[0047] Theconceptofpointradiation may also be similarto
the field function of point’s primitive in implicit modeling
(see Bloomenthal, J., Introduction to Implicit Surfaces, Mor-
gan Kaufmann Publishers Inc. (1997)). In implicit modeling,
various primitive volumes may be used and then are blended
with a tree-like structure (see Wyvill, B. et al., “Extending the
CSG Tree—Warping, Blending and Boolean Operations inan
Implicit Surface Modeling System,” Computer Graphics
Forum 18, pp 149-158 (1999)). The methods and systems do
not necessarily rely on implicit functions and sorting hierar-
chical blending operators. The methods and systems can
work on point primitives and can directly operate on volu-
metric datasets. Therefore, methods and systems may be
viewed as falling in the category of point-based modeling and
rendering.

Point Radiation Methodology

[0048] For the input 3D point p=(X, y, ), a Gaussian dis-
tribution function is used for spreading energy radially into
the volume space around p. The Gaussian function smoothes
neighboring elements and provides high-quality anti-aliased
rendering. The kernel of Gaussian function is defined by a
radius R, in terms of number of voxels. The 2Rx2Rx2R
region forms a 3D footprint in the volume space. To compute
the weight o at a particular voxel v of the footprint, one can
apply 3D Gaussian function: w=Gaussian3D(v). In an
embodiment, a simple summation is used to accumulate the
energy contributions from all input points.

[0049] For implementing the point radiation technique, a
geometry shader is utilized, along with its ability to render to
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3D textures. The geometry shader allows point primitives to
be amplified and redirected to any location in the 3D output
texture. One possibility is to use these features for creating
and evaluating the 3D footprint of the input point and blend it
with the output volume. However, if one directly instructs the
geometry shader to generate the set of all footprint points, the
geometry shader may become overloaded. To reduce the
number of points processed by the hardware, a point sprite
hardware acceleration function can be utilized. It allows a
point to be rasterized into a square region consisting of frag-
ments containing relative coordinates with respect to the
input point (e.g., fragment at the lower-right corner has coor-
dinate (1, 1)). To reconstruct the set of 3D footprint voxels, a
stack of 2D point sprites can be utilized to largely reduce
loads on the geometry shader.

[0050] FIG. 4 illustrates reconstructing a set of 3D footprint
voxels from 2D point sprites according to an embodiment. As
shown, points are emitted as 2D point sprites by a single
geometry program and reconstructed into 3D footprint vox-
els. Each 2D point sprite contains automatically generated
texture coordinates ranging from (0, 0) to (1, 1).

[0051] To compute the energy at a footprint voxel, the 3D
Gaussian function is sampled. Theoretically, this function
could be sampled by evaluating it at a 3D coordinate. But this
requires the storing of a 3D texture in the GPU memory to
represent the Gaussian kernel. When composing a high reso-
Iution sampling, a large amount of memory has to be allocated
for storing the 3D texture. However, the 3D Gaussian function
can be evaluated by multiplying a 2D and a 1D Gaussian
functions as follows:

& =x)® + = y0)’ ]a o (_ -2V ]
202 LT

o ( (x—x0)> + (y - yo)* + (2 — 20)°
=a’exp|— o

fe0f@) = azexp(_

= flx, y, 2,

[0052] where a>0 and b are the parameters of Gaussian
function and (X,, y,, Z,) is its center. This scheme reduces
memory consumption since it is only necessary to store a 2D
texture and a 1D texture on the GPU. Then, the Gaussian
functions are reconstructed using programmable graphics
hardware. To begin the radiation process, the geometry
shader receives the position and attributes of an input point p
fetched via the vertex shader. Next, the point radiation is
computed by first transforming the position of p into screen-
coordinate to prepare it for rasterization. Then, the first layer
of'the 3D footprint is computed with a viewport transforma-
tion scheme using the equation:

layerO=round(p,/T)-R,

where p, is a normalized depth value of p and T is the depth of
the voxel dimensions. Next, the process iterates through
layerO to layer(2R-1) and duplicates a point primitive for
each layer to reconstruct the 3D footprint. Each point should
be associated with two attributes: (1) the weight value in the
z direction, ZWeight, sampled from the 1D Gaussian texture
computed from the normalized layer coordinate and (2) the
sample value s of point p (e.g., intensity value). After the
rasterization step, the set of points emitted by the geometry
shader are converted into 2D point sprite fragments. In the
fragment shader, the 2D Gaussian texture is looked up with
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the 2D point sprite coordinate, and the result is combined with
ZWeight to form a 3D energy value w corresponding to a 3D
footprint location. The final fragment value is then combined
with the sample value s and blended into the radiation vol-
ume.

Interactive Volume Tools

[0053] As discussed, the GPU-based point radiation tech-
nique provides a building block for creating a set of real-time
volume manipulation tools that include, but are not limited to,
direct drilling, lasering, peeling, cutting, and/or pasting.
Based on the teachings herein, a person having ordinary skill
in the relevant art(s) would readily understand that other
volume tools may be used and integrated with the methods
and systems. One possible implementation of the GPU-based
point radiation tools include medical illustrations depicting
clinical procedures using physical operations like drilling and
peeling. According to an embodiment, the user specifies a
closed-curve region directly over the volume to define the tip
shape of'the sculpting tool or the volumetric region of interest
for uncovering. This closed-curve region is then used to con-
struct a computational mask in which each element can pen-
etrate/cut through the volume using local geometric property
such as normal directions on the volume surface.

Mask Generation

[0054] The first step is to generate a binary computational
mask, where 1 indicates the pixels are contained in the
sketched area and 0 otherwise. Therefore, a closed curve is
necessary to divide the area to inside and outside. This closed
curve can be defined in two ways (1) as simple shapes (circles,
squares, etc) approximating specific sculpting tools or surgi-
cal medical devices or (2) as closed curves freely sketched by
the user approximating surgical cuts, for instance. The freely-
sketched curve is created by enclosing the piecewise linear
curve strokes created from the input points. Sketching a fine
curve on the screen requires fast processing of the stylus input
when complex rendering is involved. Since rendering the
volume data is a costly operation, simultaneously sketching
and rendering the volume is deemed to degrade the curve
quality. In order to obtain smooth sketching, the background
rendering (i.e., the volume raycasting) is frozen by saving the
entire scene to a texture. Thus when the user places strokes on
the screen, the screen-sized texture is rendered first followed
by the input strokes. This avoids delays caused by the con-
current rendering of both the sketch and the volume data. To
generate the mask, the enclosing sketch area is filled using the
stencil buffer witha 1-bit color. Then the content of the stencil
buffer is saved as a texture.

[0055] Direct use of a binary mask for sculpting or remov-
ing material from the volume can introduce aliasing eftect. To
avoid aliasing in the image space, the mask generation pro-
cess is modified, and a post-filtering step is performed.
Instead of using a mask with a binary format, floating-points
are used to represent intermediate values between areas cov-
ered by the sketch and outside the sketch. This method pro-
duces a smooth blending on the boundary of the sketched
region and further prevents aliasing in the volume space. In
the post-filtering process, stochastic sampling is adapted, and
jittering is applied on a regular grid. Jittering is a method that
trades aliases with noise where new pixel positions are
sampled within a sub-pixel (i.e., grid cell)—the final color is
then reconstructed with some scheme. The cubic B-spline
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reconstruction filter is chosen as it provides smooth results
while maintaining sharpness and details.

Drilling

[0056] Asdiscussed, one GPU-based point radiation tool is
a drilling tool that allows the user to carve into the volume by
sweeping a mask along the viewing direction. The mask
represents the shape of the drill’s tip that can be circle, ellipse,
square, or any other shapes sketched by the user. The drilling
mask is matched to the view plane. This, in addition to the use
of'viewing direction, are natural selections and help to reduce
the user interventions.

[0057] FIGS. 5A-5B illustrate an example of a user oper-
ating a drilling tool according to an embodiment. More spe-
cifically, FIG. 5A shows drilling the super-brain data with a
square mask, raycasting into the volume to find surface
points, and executing point radiation along the view-direc-
tion. FIG. 5B shows applying multiple pressures to cut
through the skull.

[0058] Upon receiving a pressure change (from a stylus) or
slight movement, the surface points are found by casting rays
from the mask plane into the volume space, as shown in FIG.
5A. To perform drilling, the mask elements are attached to the
surface points and execute individual point radiation opera-
tion. This process is repeated according to the depth of drill-
ing: depth=depth,, xpressure,, where depth,,, is a maxi-
mum drilling depth allowance for each surface detection
operation; pressure,, is the instantaneous pressure normalized
to [0, 1], either supplied by a stylus or from a second input
source; and depth is an integer defining the succession for the
mask radiation process. Based on the inventors’ observations,
setting the depth,,, .. value to the range of 8 to 12 is suitable for
a volume of size 256°. Having a maximum drilling depth of
12 prevents excessive removal of volume materials for every
stylus input and help maintain stylus responsiveness. Succes-
sive mask operations offset the positions of the mask ele-
ments with a small amount (i.e., relative to the size of a voxel)
along the view-direction.

Lasering

[0059] To enable more flexibility, another carving tool is
provided that is slightly different from the drilling tool and
can simulate 3D laser wand. FIG. 6A-6B illustrate an
example of a user operating a lasering tool according to an
embodiment. More specifically, FIG. 6A illustrates lasering a
super-brain dataset with a circular mask, raycasting into the
volume to find surface position and normal, and executing
point radiation parallel to the mask. FIG. 6B illustrates mov-
ing and applying various pressures to remove the skull layer.
[0060] In the lasering tool, the mask is swept along the
normal of the visible surface. And, the laser mask (the tool’s
tip) is orthogonal to the gradient of visible surface. As the
mask moves, a surface point is found by casting a single ray
from the center of the mask into the volume space. The
geometric information on this point, surface position and
normal, is then used for relocating and orienting the mask in
3D. When pressure is applied on the mask, point radiation is
executed by emitting points parallel to the oriented mask
(FIG. 6A). The depth of lasering is computed similar to the
drilling tool with the amount of input pressure applied from a
stylus. By setting the maximum depth value to the range of 18
to 22, it works well for a volume of size 256° and prevents the
laser operation from removing excessive surface layers. To
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minimize the user input, in the final implementation, flexibil-
ity for changing the sweeping direction is limited, although
the framework is capable of this feature.

Peeling, Cutting and Pasting

[0061] To facilitate removing a large surface region at once
(e.g., opening the skull), a peeling tool is provided. FIG.
7A-7B illustrate an example of a user operating a peeling tool
according to an embodiment. More specifically, FIG. 7A
illustrates peeling the skull with a free-form mask, parallel
raycasting into the volume to find separate surface position
and normal, and executing point radiation along the detected
inverse normal directions. FIG. 7B illustrates removing sur-
face layers and pasting back the skull with a second rendering
pass.

[0062] The peeling operation can be seen as wrapping a
surface region sketched by a user into a mask. To create the
impression of peeling, each point of the mask, associated to a
point on the visible surface, should move along the normal of
the surface at that point. Therefore, the peeling tool has a
variable sweeping direction as opposed to the drilling or
lasering tool’s constant direction. Consequently, the condi-
tion of mask peeling holds only if the target surface contains
a smooth change of gradients. To precisely control the peeling
layers, the peeling operation is performed by adjusting a
slider or dragging a pen on the tablet instead of applying
pressures. After composing the peeling mask, parallel rays
are cast from the mask plane into the volume space to find
individual surface position and normal direction for each
element on the mask (FIG. 7A). To perform the peeling opera-
tion, the mask elements are relocated to the detected surface
points and emit independent point radiation along the inverse
normal as cutting path.

[0063] To simultaneously indicate the sculpted portion, a
cut and paste tool is provided that allows the region cut by the
peeling tool to be pasted back with a different position and
orientation in the scene (FIG. 7B) through an additional ren-
dering criteria. In a cut scene, voxels with associated radiation
values (i.e., sampled from the radiation volume) less than 0.5
are rendered. In a paste scene, the visibility criteria is reversed
(i.e., those with radiation values greater than or equal to 0.5
are rendered instead). To simultaneously display the cut and
paste scene, dual-rendering is performed with the GPU-based
raycasting engine. As the radiation values range from 0 to 1.0,
the value 0.5 can be selected as a natural candidate for distin-
guishing the cut and paste rendering.

Interactive Seeded Region Segmentation

[0064] Segmentation is often broken down into edge-based
or region-based methods. Each of these in turn may be
manual or computer assisted (including completely auto-
matic). Along the edge-based category, a typical manual seg-
mentation process requires a trained specialist to draw con-
tours around the region of interest (ROI) on cross-sectional
images. These contour lines are then linked and reconstructed
into a 3D representation for further analysis. This procedure
can become a challenging task if the target is, for example,
blood vessels in the brain, which by nature involves complex
shape with many components unpredicted turning directions.
In the seeded region growing algorithm, the algorithm starts
from the selected seed point (the parent seed) as the current
voxel and moves to adjacent voxels (the child seeds) with
feature values (such as intensity or gradient magnitude) close
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to the values in the current voxel. Standard CPU implemen-
tation of this method (e.g., breath first search) requires storing
the seeds in a queue with sequential processing of the neigh-
bors (adjacent voxels). For a 512° volume, this amounts to
805 million iterations every frame. In the context of high-
quality rendering with raycasting, the segmentation result
(i.e., a volume) also needs to be transferred from CPU to GPU
(per-frame), further impeding interactive control of segmen-
tation. Recent advancements in programmable hardware
bring the potential of accelerating the region growing pro-
cess. However, the architecture of parallel memory access on
the GPU makes it hard to parallelize the seed growing pro-
cess, which requires a single seed to finish with its exploration
operations before another seed can proceed. The methods and
systems, however, include a parallel execution environment
that specifically addresses these shortcomings for planting
and progressing seeds, as discussed below.

GPU-Based Segmentation Framework

[0065] FIG. 8 illustrates an overview of the GPU-based
segmentation framework according to an embodiment. As
shown, the processing initiates from the source seed collec-
tion (1), enters the processing unit, exchanges seed growing
information with the seed volume (2), and outputs the resultin
the destination seed collection (3). The result is point-radiated
into the segmentation volume (4) for smooth rendering. The
entire process is repeated (5) by swapping the source and
destination seed collection.

[0066] In an embodiment, the GPU-based technique
includes four parallel functions: Sketch Seeds, Grow Region,
Shrink Region, and Recover Seeds. Each function takes a set
of input seeds to produce output seeds with a self-feedback
loop (as shown in FIG. 8). The Sketch Seeds function converts
user strokes into master seeds which are used to initiate the
segmentation process. The Grow Region function expands
the set of parent seeds to produce child seeds. This function
also marks the voxels that could not be advanced (i.e., due to
threshold constraints) as suspended seeds. The Shrink Region
function and Recover Seeds function support the dynamic
control for thresholding. The Shrink Region function reverses
the region growing steps. And finally, the Recover Seeds
function allows previously suspended seeds to be reinstated
when threshold constraints are modified. These functions are
evaluated on the GPU with multi-pass processing techniques
and they need to have access to seeds’ information. The seeds’
information is stored in vertex buffers called a seed map. It is
used to control the segmentation process by mapping the
seeding states (such as master, parent, child, suspended, or
reinstated seeds) into respective voxels. Communications
with the seed map is done using the geometry shader, with its
unique capability of reading/writing 3D seed points into any
location in the volume. Each function starts by feeding a
source seed collection, exchanging seed growing information
with the seed map, and writing the result into the destination
seed collection. For the rendering purpose, the result of each
function operation is also recorded in a 3D texture called a
segmentation map. Direct use of the seed collection in the
segmentation map produces aliasing artifacts due to its binary
values (segmented/not segmented). This can be seen in FIG.
9 A which illustrates a partial segmentation of ventricles using
a binary segmentation map without point radiation.

[0067] To obtain smooth and high quality rendering of the
segmentation result, point radiation is utilized to convert the
collected seeds into blended regions in the segmented map.
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This can be seen in FIG. 9B which illustrates partial segmen-
tation of ventricles using a binary segmentation map with
point radiation. When the result is rendered, the segmentation
map is sampled using 0.5 as a natural candidate to distinguish
between segmented and un-segmented regions. Finally, the
entire simulation and rendering process is repeated by
exchanging the source and destination seeds.

Sketch-Based Seeding

[0068] To allow quick multi-seeding directly in 3D,
sketches are used to indicate seeds on the displayed volume.
Multiple input strokes are mapped onto surface points of the
volume using raycasting. The stroke is first discretized and
stored in a binary 2D sketch texture. Each pixel on the texture
is then projected into the volume space to collect surface
points based on rendering parameters. For each point on the
surface, the closest voxel is found as the seed. However, as
one or more of the detected surface points may be contained
within the same voxel due to variance of volume resolution, it
is necessary to remove duplicated voxels to avoid multiple
seed points at the same voxel location. To ensure that unique
seed points are collected, the collection of detected voxels is
first stored in a list. Then, for each of the non-repeating voxels
in the list, the respective voxel is un-projected into a second
list, storing the master seeds that map one-to-one to unique
voxels in the volume.

Parallel Region Growing/Shrinking

[0069] Region growing is enabled while exploring multiple
seeds simultaneously. During the growing process, the region
growing algorithm starts from a set of parent seeds and
advances to a set of child seeds using a breadth-first search
(BFS) algorithm. In a number of region growing situations,
different materials such as tissues and blood vessels have
close intensity values and cannot be easily controlled by
means of thresholding.

[0070] This can be explained with reference to FIGS. 10A-
10D, which illustrate a segmentation of carotid and cerebral
arteries from the angiogram dataset. FIG. 10A illustrates
sketches on high intensity data with X-ray and MIP render-
ing. FIG. 10B illustrates the outcome as a forward region
grows in parallel. FIG. 10C provides an illustration of the
forward region growing resulting in undesired tissues, and
FIG. 10D shows extra growth being removed with region
shrinking.

[0071] For example, the user initially sketches seeds on the
blood vessels (FIG. 10A), but during the growing process, a
group of child seeds may start to spread to unrelated materials
(FIG. 10C). However, in additional to forward growing,
region shrinking is provided that reverses the grown regions
and rewinds the segmentation (FIG. 10D). This provides the
user an opportunity to undo partial region growing and cease
the segmentation process. Afterwards, the user could resume
the growing process by re-sketching seeds on the remaining
part of the original intent.

[0072] To have the ability of shrink, parent/child relation-
ship are tracked in the region growing. A seed map is used to
save the parent information for each seed. With parallel
execution, a conflict arises when two or more parent seeds are
concurrently exploring the same voxel location as a child.
Saving all of the possible parents at the same voxel location
(child) requires a bigger field for the seed map’s memory unit.
To avoid this, the possibility of multiple parents are prevented
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simply by over-writing the previous values when a new parent
arise. This means that each seed (as a child) has the informa-
tion of the most recent parent in the growing process.

[0073] To shrink the grown region, first the segmented vox-
els occupied by the last set of child seeds are erased, and then
their neighboring voxels are searched to find potential parent
seeds. The reversing process is based on the order in which the
child seeds are processed; therefore, it is not guaranteed that
the shrinking algorithm always returns to the original set of
parent seeds while itis a plausible solution. Another benefit of
the reverse operation is that additional strokes can be drawn to
indicate the area of removal. In this case, the sketched seeds
become the source (i.e., the child seeds) of the reversing
operation, allowing targeted region removal.

[0074] In addition to searching for the child seeds in the
parallel region growing process, the voxels that could not be
advanced (i.e., due to threshold constraints) are marked as
suspended. The suspension information is recorded using the
seed map. When thresholds are modified, the suspended seeds
are lookup from the seed map, and they are allowed to re-
participate in the normal region growing/shrinking iterations.

RESULTS AND DISCUSSION

[0075] Inan embodiment, the methods and systems can be
implemented on an Intel Core2 Duo, with GeForce 8800
GTX, 768 MB graphics card. Raw and pre-segmented volu-
metric medical datasets can be selected in both CT or MRI
modality. In an embodiment, the system is configured to
achieve relatively fast computation rates in mask construction
(80 ms), volume tools (50 fps on average), sketching seeds
(60 ms), dynamic region growing (58 fps) and high-quality
raycasting rendering (50 fps in X-ray mode and 60 fps in
surface mode), with screen recording resolution of 1230x
870. Note that the performance of point radiation scales with
the amount of parallel (or stream) processors on the hardware.
Based on the inventors” observations, it was discovered that a
kernel radius of 3 produced prominent results with the best
performance for data ranging from 128> to 512°.

[0076] As discussed above, FIG. 3 demonstrates peeling
and segmentation of a super-brain dataset (MRI, 256x256x
256). FIG. 11A however illustrates peeling of the skull and
segmentation of the left and right lateral ventricle from the
same super-brain dataset. The process illustrated in FIG. 11A
shows opening the skull with the peeling tool, sketching seeds
on the left ventricle, regions growing into surrounding mate-
rial, reversed growing, sketching seeds on the right ventricle
and completing segmentation.

[0077] FIG. 11B illustrates of peeling of the abdominal
wall and segmentation of the colon from an abdomen dataset
scanned in supine orientation (CT, 512x512x426). The pro-
cess illustrated in FIG. 11B shows opening the abdominal
wall with the peeling tool, placing multiple strokes on the
colon, region growing in parallel, covering the entire colon,
and pasting the segmented part in isolation.

[0078] FIG. 11C illustrates lasering, drilling, and segmen-
tation of a molar tooth from a skull dataset (Rotational C-arm
X-ray scan of phantom of a human skull, 256x256x256). The
process illustrated in FIG. 11C shows lasering the skull with
acircular mask, removing occluding bone, sketching seeds on
the molar tooth, region growing, and pasting the segmented
tooth with zoom.
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[0079] FIG. 10 illustrates seed sketching and segmentation
of carotid and cerebral arteries from the angiography dataset
(3T MRT Time-of-Flight of a human head, 256x320x128).

CONCLUSION AND ALTERNATIVE
IMPLEMENTATIONS

[0080] A GPU-based point radiation technique is provided
as a real-time manipulation primitive in the context of high
quality volume manipulation, sculpting, segmentation, and
visualization (raycasting rendering). Instead of the traditional
way of browsing from hundreds of cross-sectional slices or
adapting 3D devices, a point-based strategy is implemented,
and a set of interactive volume tools for direct drilling, laser-
ing, peeling, cutting, and pasting are provided. With point
radiation, an interactive region growing segmentation system
can be provided to support multiple seeds planting with
sketches. To effectively handle large medical volume
datasets, the embodiments can be implemented with pro-
grammable hardware to thereby achieve dramatic perfor-
mance improvement (with local updates) as compared to the
3D texture-based (global) approach in volume clipping and
region growing segmentation.

[0081] Other implementations include performing user/
clinical studies in specific medical domains. The set of vol-
ume tools, are provided by way of example and not limitation,
other volume tools may be used and modeled after specific
application domains such as virtual surgery. It would also be
useful to extend the point radiation technique to create a
non-spherical radiation in space and possibly generate a vari-
ety of other sculpting primitives and cutting tools. The GPU-
based framework can be adapted with physically-based vol-
ume deformation in domains where real-time, intuitive
cutting and volume manipulation is essential (e.g., virtual
surgery). Moreover, the framework can provide a ground for
a real-time implicit modeler.

[0082] The figures herein are conceptual illustrations
allowing an explanation. It should be understood that various
aspects of the embodiments could be implemented in hard-
ware, firmware, software, or a combination thereof. In such
an embodiment, the various components and/or steps would
be implemented in hardware, firmware, and/or software to
perform the functions. That is, the same piece of hardware,
firmware, or module of software could perform one or more
of the illustrated blocks (e.g., components or steps). Unless
explicitly stated otherwise herein, the ordering or arrange-
ment of the steps and/or components should not be limited to
the descriptions and/or illustrations hereof.

[0083] In software implementations, computer software
(e.g., programs or other instructions) and/or data is stored on
one or more machine readable media as part of a computer
program product, and is loaded into or written on a computer
system or other device or machine via a removable storage
drive, hard drive, or communications interface. The software
described herein need not reside on the same or a singular
medium in order to perform the embodiments described
herein. Computer software can be implemented by any pro-
gramming or scripting languages, such as C, C++, Java, Java-
script, Action Script, or the like. Computer programs (also
called computer control logic or computer readable program
code) are stored in a various memory types, including main
and/or secondary memory, and executed by one or more
processors (controllers, or the like) to cause the one or more
processors to perform the functions as described herein. In
this document, the terms machine readable medium, com-
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puter program medium and computer usable medium are
used to generally refer to media such as a random access
memory (RAM); a read only memory (ROM); a removable
storage unit (e.g., a magnetic or optical disc, flash memory
device, or the like); a hard disk; electronic, electromagnetic,
optical, acoustical, or other form of propagated signals (e.g.,
carrier waves, infrared signals, digital signals, or the like); or
the like.

[0084] Notably, the figures and examples above are not
meant to limit the scope of the present invention to a single
embodiment, but other embodiments are possible by way of
interchange of some or all of the described or illustrated
elements. Moreover, where certain elements of the present
invention can be partially or fully implemented using known
components, only those portions of such known components
that are necessary for an understanding of the present inven-
tion are described, and detailed descriptions of other portions
of such known components are omitted so as not to obscure
the invention. In the present specification, an embodiment
showing a singular component should not necessarily be lim-
ited to other embodiments including a plurality of the same
component, and vice-versa, unless explicitly stated otherwise
herein. It is to be understood that the phraseology or termi-
nology herein is for the purpose of description and not of
limitation, such that the terminology or phraseology of the
present specification is to be interpreted by the skilled artisan
in light of the teachings and guidance presented herein, in
combination with the knowledge of one skilled in the relevant
art(s). Moreover, it is not intended for any term in the speci-
fication or claims to be ascribed an uncommon or special
meaning unless explicitly set forth as such. Further, the
present invention encompasses present and future known
equivalents to the known components referred to herein by
way of illustration. While various embodiments have been
described above, it should be understood that they have been
presented by way of example, and not limitation. It would be
apparent to one skilled in the relevant art(s) that various
changes in form and detail could be made therein without
departing from the spirit and scope of the invention. Thus, the
present invention should not be limited by any of the above-
described exemplary embodiments, but should be defined
only in accordance with the following claims and their
equivalents.

1. A method for interactive volume manipulation, sculpt-
ing, segmentation, and visualization, the method comprising:

accessing three-dimensional point texture data including a
plurality of seed voxels for a graphic image;

visualizing the graphic image on a user interface based on
the texture data;

receiving user input to define an input sketch specifying a
closed-curve region of the graphic image;

designating the seed voxels associated with the closed-
curve region as active seed voxels;

processing the active seed voxels in parallel to grow each of
the active seed voxels without growing seed voxels not
designated as active voxels; and

visualizing a segment of the graphic image based on the
processed active seed voxels.

2. The method of claim 1, further comprising:

storing state information associated with each active seed
voxel in separate three-dimensional buffers.

3. The method of claim 2, further comprising:

querying the three-dimensional buffers to enable dynamic
manipulation of the graphic image.
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4. The method of claim 3, wherein dynamic manipulation
includes at least one of direct drilling operation, lasering
operation, peeling operation, cutting operation, or pasting
operation.

5. The method of claim 3, wherein dynamic manipulation
includes at least one of reversing a previously grown region or
reinstating a previously grown region.

6. A computer program product comprising a computer-
readable medium having a computer-readable program code
embodied therein, the computer-readable program code
adapted to be executed to implement a method for interactive
volume manipulation, sculpting, segmentation, and visual-
ization, the method comprising:

accessing three-dimensional point texture data including a

plurality of seed voxels for a graphic image;
visualizing the graphic image on a user interface based on
the texture data;

receiving user input to define an input sketch specifying a

closed-curve region of the graphic image;

designating the seed voxels associated with the closed-

curve region as active seed voxels;

processing the active seed voxels in parallel to grow each of

the active seed voxels without growing seed voxels not
designated as active voxels; and

visualizing a segment of the graphic image based on the

processed active seed voxels.

7. The computer program product of claim 6, where the
method further comprises:

storing state information associated with each active seed

voxel in separate three-dimensional buffers.

8. The computer program product of claim 7, where the
method further comprises:

querying the three-dimensional buffers to enable dynamic

manipulation of the graphic image.

9. The computer program product of claim 8, wherein
dynamic manipulation includes at least one of direct drilling
operation, lasering operation, peeling operation, cutting
operation, or pasting operation.

10. The computer program product of claim 8, wherein
dynamic manipulation includes at least one of reversing a
previously grown region or reinstating a previously grown
region.
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11. A system for interactive volume manipulation, sculpt-
ing, segmentation, and visualization, the system comprising:

a CPU;

memory coupled to the CPU;

a display coupled to the CPU; and

a user input device coupled to the CPU;

where the system is configured to execute computer-read-

able program code to implement a method for interactive

volume manipulation, sculpting, segmentation, and

visualization, the method comprising:

accessing three-dimensional point texture data includ-
ing a plurality of seed voxels for a graphic image;

visualizing the graphic image on a user interface based
on the texture data;

receiving user input to define an input sketch specifying
a closed-curve region of the graphic image;

designating the seed voxels associated with the closed-
curve region as active seed voxels;

processing the active seed voxels in parallel to grow each
of' the active seed voxels without growing seed voxels
not designated as active voxels; and

visualizing a segment of the graphic image based on the
processed active seed voxels.

12. The system of claim 11, where the CPU further com-
prises a Graphics Processing Unit (GPU).

13. The system of claim 11, where the method further
comprises:

storing state information associated with each active seed

voxel in separate three-dimensional buffers.

14. The system of claim 13, where the method further
comprises:

querying the three-dimensional buffers to enable dynamic

manipulation of the graphic image.

15. The system of claim 14, wherein dynamic manipula-
tion includes at least one of direct drilling operation, lasering
operation, peeling operation, cutting operation, or pasting
operation.

16. The system of claim 14, wherein dynamic manipula-
tion includes at least one of reversing a previously grown
region or reinstating a previously grown region.
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